Huitong(Jo) Pan

🗘 Jo-Pan | 🕿 Google Scholar | 🛅 huitongpan | 🗠 huitong.pan@temple.edu | 🖡 7032030966 | 🎇 Philadelphia, PA

EDUCATION

2019 - Present	PhD in Computer Science (Focus: NLP & Computer Vision) at Temple University	$(GPA \ 3.95/4.00)$		
2017 - 2018	M.S. in Data Science at University of Virginia	(GPA: 3.84/4.00)		
2015 - 2017	B.S. in Finance and Business Analytics at University of Virginia	× , , ,		
Skills				
Technical Exportiza – Natural Languaga Progoging Languaga Models (LLMs) Artificial Intelligence (AI) Knowledge				

Technical Expertise	Natural Language Processing, Large Language Models (LLMs), Artificial Intelligence (AI), Knowledge
	Graph, Machine Learning, Generative Models, Anomaly Detection, Large-Scale Model Training
Programming	Python(Expert), Java, R, SQL, NOSQL, Spark SQL, MATLAB, Linux, HTML
Tools	PyTorch, TensorFlow, CUDA, Pyspark, Scikit-Learn, NLTK, AWS, Docker, Tableau, Neo4j, GitHub

WORK EXPERIENCE

Temple University - Research Assistant and Teaching Assistant	08/2019 - Present
- Taught lab sessions and graded coursework for classes of 30+ students in Java and Database Ma	
Bosch - Computer Vision Intern	06/2021 - 08/2021
- Built and optimized deep learning models (e.g., MobileNet, YOLOv5) for object detection in s	
- Optimized deep learning models using TensorFlow Lite with quantization for real-time application	
- Collaborated in an Agile setting with cross-functional teams for seamless model deployment ac	
- Documented and maintained clean, modular code for efficient deployment in production enviro	
Springbok Analytics - Research Scientist Intern	06/2020 - 08/2020
 Fine-tuned EfficientNet and U-Net models for biopsy tissue segmentation and cancer grade cla Improved accuracy to 94% through post-processing segmentation results with medical imaging 	
Springbok Analytics - Data Scientist	07/2018 - 07/2019
 Led the development of 3D MRI segmentation models for medical image analysis, improving a prostate and thyroid nodules using neural networks (e.g., Dilated U-Net, GANs) in TensorFlow Prepared and cleaned clinical patient records and raw MRI data in Python Assisted in transforming trained segmentation models into C++ applications on scanning mach 	v
Research Projects	
Scientific Publications Information Retrieval	01/2021 - Present
- Created large-scale datasets: DMDD (31K CS papers), SciDMT (48K CS papers) and Clima	atePubNER ($17K$ climate
science papers), using distant supervision for domain-specific named entities annotations	
- Fine-tuned and evaluated LLMs (e.g., GPT-4, Claude, Llama) and non-LLMs (e.g., BERT, B	,
recognition (NER), relationship detection, and summarization using high-performance comput	- · · · ·
- Led annotation efforts with domain experts, implementing tools on AWS like INCEPTION, I ensure high-quality annotations and effective human-computer interaction	Label Studio, and Brat to
- Developed a climate science knowledge graph using Neo4j, GraphRAG, LlamaIndex and LLM-	based techniques
Flowchart Understanding	05/2023 - Present
- Constructed the multimodal dataset FlowLearn with 6 types of Visual Question Answering (VQ	A) tasks focused on visual
components, Optical Character Recognition (OCR), and description for improved understanding	° '
- Evaluated and fine-tuned Large Vision-Language Models (VLMs) (e.g., LLaVA, Qwen-VL) with	~
- Optimized GPU/CPU performance using parallel computing and DeepSpeed to enhance efficie	
Computer Vision Projects	08/2019 - 12/2022
- Introduced SGUNet for thyroid nodule segmentation and disease classification in Python	
- Experimented with handwritten stroke trajectory recovery using Visual Transformer, GANs, G	raph Neural Network and
graph representation learning to enhance handwriting recognition systems	1 1
 Optimized CLIP model with dual-input and embedding aggregation, enhancing image retrieval Utilized advanced statistical methods, including hypothesis testing, significance analysis and optimize and rigorously evaluate model performance across various computer vision tasks 	0
SELECTED PUBLICATIONS (In total 6 First-Author, 2 Second-Author Papers)	

SELECTED PUBLICATIONS (In total 6 First-Author, 2 Second-Author Papers)

Pan, Huitong, Qi Zhang, Eduard Dragut, Cornelia Caragea, and Longin Jan Latecki. "FlowLearn: Evaluating Large Vision-Language Models on Flowchart Understanding". 27th European Conference on Artificial Intelligence (ECAI), 2024.

Pan, Huitong, Qi Zhang, Cornelia Caragea, Eduard Dragut, and Longin Jan Latecki. "SciDMT: A Large-Scale Corpus for Detecting Scientific Mentions". *LREC-COLING*, 2024.

Pan, Huitong, Qi Zhang, Eduard Dragut, Cornelia Caragea, and Longin Jan Latecki. "DMDD: A Large-Scale Dataset for Dataset Mentions Detection". Transactions of the Association for Computational Linguistics (TACL), 2023.

Pan, Huitong, Quan Zhou, and Longin Jan Latecki. "SGUNET: Semantic Guided UNET For Thyroid Nodule Segmentation". 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), 2021.